Yashar Mousavi, Amin Zarei, Arash Mousavi, Mohsen Biari. Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles. International Journal of Automation and Computing, vol. 18, no. 5, pp.802-813, 2021. https://doi.org/10.1007/s11633-021-1282-3
Citation: Yashar Mousavi, Amin Zarei, Arash Mousavi, Mohsen Biari. Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles. International Journal of Automation and Computing, vol. 18, no. 5, pp.802-813, 2021. https://doi.org/10.1007/s11633-021-1282-3

Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles

doi: 10.1007/s11633-021-1282-3
More Information
  • Author Bio:

    Yashar Mousavi received the M. Sc. degree in control engineering from Shahrood University of Technology, Iran in 2014. He is currently a Ph. D. degree candidate as a member of the Power and Renewable Energy Systems (PRES) Research Division with Department of Applied Science, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, UK.His research interests include evolutionary optimization, renewable energy, robotic systems and control, robust nonlinear control, fractional-order control, and fault-tolerant control. E-mail: seyedyashar.mousavi@gcu.ac.uk (Corresponding author) ORCID ID: 0000-0002-6718-3599

    Amin Zarei received the B. Sc. degree in electrical engineering from University of Sistan and Baluchestan, Iran in 2011 and the M. Sc. degree in control engineering from Shahrood University of Technology, Iran in 2014. He is currently a Ph. D. degree candidate in control engineering at University of Sistan and Baluchestan, Iran.His research interests include complex systems, networked control systems, nonlinear control, chaos theory, and time series prediction. E-mail: amin.zarei@pgs.usb.ac.ir ORCID ID: 0000-0003-2326-4431

    Arash Mousavi received the B. Sc. degree in control engineering from Payam University, Iran in 2013, and the M. Sc. degree in electrical engineering from Islamic Azad University of Jahrom, Iran in 2016. He is currently the head of Electrical Engineering Research Lab (EERL) with Department Electrical Engineering and Applied Sciences, Paradise Research Center, Iran.His research interests include renewable energy, robotic systems and control, power systems, impacts of distributed generations on power systems, and reliability of power systems. E-mail: mousavii.arash@gmail.com

    Mohsen Biari received the B. Sc. and the M. Sc. degrees in control engineering from Shahrood University of Technology, Iran in 2010 and 2013, respectively. He is currently the head of Robotics and Automation research Lab with Science and Technology Center, Iran.His research interests include robotic systems and control, nonlinear control, fault-tolerant control, autonomous control, and computer vision. E-mail: mohsen.biari@gmail.com

  • Received Date: 2020-09-27
  • Accepted Date: 2021-01-22
  • Available Online: 2021-09-08
  • Publish Date: 2021-10-01
  • This paper investigates the precise trajectory tracking of unmanned aerial vehicles (UAV) capable of vertical take-off and landing (VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller (HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm (FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables, which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy′s effectiveness and its superiorities over conventional sliding mode controller (SMC) and integral SMC approaches.

     

  • loading
  • [1]
    H. Bin, J. C. Wang. Deep learning based hand gesture recognition and OAV flight controls. International Journal of Automation and Computing, vol. 17, no. 1, pp. 27–29, 2020. DOI: 10.1007/s11633-019-1194-7.
    [2]
    F. Zhou, W. Zheng, Z. F. Wang. Adaptive noise identification in vision-assisted motion estimation for unmanned aerial vehicles. International Journal of Automation and Computing, vol. 12, no. 4, pp. 413–420, 2015. DOI: 10.1007/s11633-014-0857-7.
    [3]
    M. D. Hua, T. Hamel, P. Morin, C. Samson. A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones. IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1837–1853, 2009. DOI: 10.1109/TAC.2009.2024569.
    [4]
    A. Arab, Y. Mousavi. Optimal control of wheeled mobile robots: From simulation to real world. In Proceedings of American Control Conference, IEEE, Denver, USA, pp. 583−589, 2020. DOI: 10.23919/ACC45564.2020.9147898.
    [5]
    M. R. Cohen, J. R. Forbes. Navigation and control of unconventional VTOL UAVs in forward-flight with explicit wind velocity estimation. IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1151–1158, 2020. DOI: 10.1109/LRA.2020.2966406.
    [6]
    J. G. Romero, H. Rodriguez-Cortes. Asymptotic stability for a transformed nonlinear UAV model with a suspended load via energy shaping. European Journal of Control, vol. 52, pp. 87–96, 2020. DOI: 10.1016/j.ejcon.2019.09.002.
    [7]
    M. D. Hua, T. Hamel, P. Morin, C. Samson. Introduction to feedback control of underactuated VTOLvehicles: A review of basic control design ideas and principles. IEEE Control Systems Magazine, vol. 33, no. 1, pp. 61–75, 2013. DOI: 10.1109/MCS.2012.2225931.
    [8]
    R. Naldi, M. Furci, R. G. Sanfelice, L. Marconi. Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms. IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 97–112, 2017. DOI: 10.1109/TAC.2016.2557967.
    [9]
    B. B. Kocer, T. Tjahjowidodo, G. G. Lee Seet. Centralized predictive ceiling interaction control of quadrotor VTOL UAV. Aerospace Science and Technology, vol. 76, pp. 455–465, 2018. DOI: 10.1016/j.ast.2018.02.020.
    [10]
    Y. Bouzid, H. Siguerdidjane, Y. Bestaoui. Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics, vol. 47, pp. 49–66, 2017. DOI: 10.1016/j.mechatronics.2017.08.002.
    [11]
    Y. Zou, Z. Y. Coordinated trajectory tracking of multiple vertical take-off and landing UAVs. Automatica, vol. 99, pp. 33–40, 2019. DOI: 10.1016/j.automatica.2018.10.011.
    [12]
    Y. Zou, Z. Y. Meng. Leader-follower formation control of multiple vertical takeoff and landing UAVs: Distributed estimator design and accurate trajectory tracking. In Proceedings of the 13th IEEE International Conference on Control & Automation, IEEE, Ohrid, Macedonia, pp. 764−769, 2017. DOI: 10.1109/ICCA.2017.8003156.
    [13]
    A. Abdessameud, F. Janabi-Sharifi. Image-based tracking control of VTOL unmanned aerial vehicles. Automatica, vol. 53, pp. 111–119, 2015. DOI: 10.1016/j.automatica.2014.12.032.
    [14]
    A. Abdessameud, F. Janabi-Sharifi. Dynamic image-based tracking control for VTOL UAVs. In Proceedings of the 52nd IEEE Conference on Decision and Control, IEEE, Firenze, Italy, pp. 7666−7671, 2013. DOI: 10.1109/CDC.2013.6761106.
    [15]
    N. Guenard, T. Hamel, R. Mahony. A practical visual servo control for an unmanned aerial vehicle. IEEE Transactions on Robotics, vol. 24, no. 2, pp. 331–340, 2008. DOI: 10.1109/TRO.2008.916666.
    [16]
    J. C. Escobar, R. Lozano, M. B. Estrada. PVTOL control using feedback linearisation with dynamic extension. International Journal of Control, 2019. DOI: 10.1080/00207179.2019.1676468.
    [17]
    K. Wang, C. C. Hua, J. N. Chen, M. J. Cai. Dual-loop integral sliding mode control for robust trajectory tracking of a quadrotor. International Journal of Systems Science, vol. 51, no. 2, pp. 203–216, 2020. DOI: 10.1080/00207721.2019.1622815.
    [18]
    C. Aguilar-Ibanez, M. S. Suarez-Castanon, J. Mendoza-Mendoza, J. de Jesus Rubio, J. C. Martinez-Garcia. Output-feedback stabilization of the pvtol aircraft system based on an exact differentiator. Journal of Intelligent &Robotic Systems, vol. 90, no. 3−4, pp. 443–454, 2018. DOI: 10.1007/s10846-017-0660-0.
    [19]
    X. S. Yang. Firefly algorithm. Engineering Optimization: An Introduction with Metaheuristic Applications, X. S. Yang, Ed., Hoboken, USA: John Wiley & Sons, Inc., pp. 79−90, 2010. DOI: 10.1002/9780470640425.ch17.
    [20]
    A. Banerjee, D. Ghosh, S. Das. Modified firefly algorithm for area estimation and tracking of fast expanding oil spills. Applied Soft Computing, vol. 73, pp. 829–847, 2018. DOI: 10.1016/j.asoc.2018.09.024.
    [21]
    I. B. Aydilek. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing, vol. 66, pp. 232–249, 2018. DOI: 10.1016/j.asoc.2018.02.025.
    [22]
    F. Pazhoohesh, S. Hasanvand, Y. Mousavi. Optimal harmonic reduction approach for PWM AC–AC converter using nested memetic algorithm. Soft Computing, vol. 21, no. 10, pp. 2761–2776, 2017. DOI: 10.1007/s00500-015-1979-8.
    [23]
    T. Niknam, R. Azizipanah-Abarghooee, A. Roosta. Reserve constrained dynamic economic dispatch: A new fast self-adaptive modified firefly algorithm. IEEE Systems Journal, vol. 6, no. 4, pp. 635–646, 2012. DOI: 10.1109/JSYST.2012.2189976.
    [24]
    Y. Mousavi, A. Alfi. Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos,Solitons &Fractals, vol. 114, pp. 202–215, 2018. DOI: 10.1016/j.chaos.2018.07.004.
    [25]
    Y. Mousavi, A. Alfi, I. B. Kucukdemiral. Enhanced fractional chaotic whale optimization algorithm for parameter identification of isolated wind-diesel power systems. IEEE Access, vol. 8, pp. 140862–140875, 2020. DOI: 10.1109/ACCESS.2020.3012686.
    [26]
    Y. Mousavi, A. Alfi. A memetic algorithm applied to trajectory control by tuning of fractional order proportional-integral-derivative controllers. Applied Soft Computing, vol. 36, pp. 599–617, 2015. DOI: 10.1016/j.asoc.2015.08.009.
    [27]
    G. W. Zhang, P. Yang, J. Wang, J. J. Sun, Y. Zhang. Integrated observer-based fixed-time control with backstepping method for exoskeleton robot. International Journal of Automation and Computing, vol. 17, no. 1, pp. 71–82, 2020. DOI: 10.1007/s11633-019-1201-z.
    [28]
    M. Chavoshian, M. Taghizadeh, M. Mazare. Hybrid dynamic neural network and PID control of pneumatic artificial muscle using the PSO algorithm. International Journal of Automation and Computing, vol. 17, no. 3, pp. 428–438, 2020. DOI: 10.1007/s11633-019-1196-5.
    [29]
    V. A. Le, H. X. Le, L. Nguyen, M. X. Phan. An efficient adaptive hierarchical sliding mode control strategy using neural networks for 3D overhead cranes. International Journal of Automation and Computing, vol. 16, no. 5, pp. 614–627, 2019. DOI: 10.1007/s11633-019-1174-y.
    [30]
    I. Zaidi, M. Chtourou, M. Djemel. Robust neural control of discrete time uncertain nonlinear systems using sliding mode backpropagation training algorithm. International Journal of Automation and Computing, vol. 16, no. 2, pp. 213–225, 2019. DOI: 10.1007/s11633-017-1062-2.
    [31]
    A. Nizar, B. M. Houda, N. A. Said. A new sliding function for discrete predictive sliding mode control of time delay systems. International Journal of Automation and Computing, vol. 10, no. 4, pp. 288–295, 2013. DOI: 10.1007/s11633-013-0723-z.
    [32]
    A. H. D. Markazi, M. Maadani, S. H. Zabihifar, N. Doost-Mohammadi. Adaptive fuzzy sliding mode control of under-actuated nonlinear systems. International Journal of Automation and Computing, vol. 15, no. 3, pp. 364–376, 2018. DOI: 10.1007/s11633-017-1108-5.
    [33]
    M. B. R. Neila, D. Tarak. Adaptive terminal sliding mode control for rigid robotic manipulators. International Journal of Automation and Computing, vol. 8, no. 2, pp. 215–220, 2011. DOI: 10.1007/s11633-011-0576-2.
    [34]
    A. J. Koshkouei, K. J. Burnham, A. S. I. Zinober. Dynamic sliding mode control design. IEE Proceedings − Control Theory and Applications, vol. 152, no. 4, pp. 392–396, 2005. DOI: 10.1049/ip-cta:20055133.
    [35]
    C. Aguilar-Ibanez, H. Sira-Ramirez, M. S. Suarez-Castanon, R. Garrido. Robust trajectory-tracking control of a PVTOL under crosswind. Asian Journal of Control, vol. 21, no. 3, pp. 1293–1306, 2019. DOI: 10.1002/asjc.1817.
    [36]
    R. Olfati-Saber. Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1949–1952, 2002. DOI: 10.1109/TAC.2002.804457.
    [37]
    A. Chalanga, S. Kamal, L. Fridman, B. Bandyopadhyay, J. A. Moreno. How to implement super-twisting controller based on sliding mode observer. In Proceedings of the 13th International Workshop on Variable Structure Systems, IEEE, Nantes, France, 2014. DOI: 10.1109/VSS.2014.6881145.
    [38]
    A. Chalanga, S. Kamal, L. M. Fridman, B. Bandyopadhyay, J. A. Moreno. Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches. IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3677–3685, 2016. DOI: 10.1109/TIE.2016.2523913.
    [39]
    A. Levant. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, vol. 76, no. 9−10, pp. 924–941, 2003. DOI: 10.1080/0020717031000099029.
    [40]
    J. A. Moreno. Lyapunov function for levant′s second order differentiator. In Proceedings of the 51st IEEE Conference on Decision and Control, IEEE, Maui, USA, pp. 6448−6453, 2012. DOI: 10.1109/CDC.2012.6426877.
    [41]
    A. Levant. Homogeneity approach to high-order sliding mode design. Automatica, vol. 41, no. 5, pp. 823–830, 2005. DOI: 10.1016/j.automatica.2004.11.029.
    [42]
    Y. Guo, B. Huang, A. J. Li, C. Q. Wang. Integral sliding mode control for Euler-Lagrange systems with input saturation. International Journal of Robust and Nonlinear Control, vol. 29, no. 4, pp. 1088–1100, 2019. DOI: 10.1002/rnc.4431.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (108) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return